Linear operation of a p-n-p-n tetrode

Abstract
An acquisition procedure for data-modulated direct-sequence spread-spectrum systems is investigated. The correlation time is partitioned into subintervals, and the integration results in these subintervals are noncoherently combined for detection. The tradeoff between noncoherent combining loss and data modulation degradation guides the optimum choice of the number of subintervals. Two forms of data modulation are considered, namely, the alternate-data and random-data cases. The parallel acquisition schemes discussed allow multiple code-phase offsets to be examined at each test. The circular state diagram approach is used to analyze the performances of these schemes. The theory presented is valid for a class of such parallel schemes.

This publication has 0 references indexed in Scilit: