Pharmacological Block of the Electrogenic Sodium Pump Disrupts Rhythmic Bursting Induced by Strychnine and Bicuculline in the Neonatal Rat Spinal Cord
- 1 January 1997
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 77 (1) , 17-23
- https://doi.org/10.1152/jn.1997.77.1.17
Abstract
Ballerini, Laura, Enrico Bracci, and Andrea Nistri. Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord. J. Neurophysiol. 77: 17–23, 1997. The cellular mechanisms underlying rhythmic bursts induced in the isolated neonatal rat spinal cord by bath application of strychnine and bicuculline (which block glycine- and γ-aminobutyric acid-A-receptor-mediated inhibition, respectively) were probed with pharmacological tools. Such spontaneous bursts were recorded either intracellularly from lumbar motoneurons or extracellularly from ventral roots. As previously described, these network-driven events consisted of large-amplitude depolarizations arising abruptly from baseline with a highly regular period (on average 28 s). Burst episodes (lasting on average 7 s) comprised several oscillations and appeared synchronously on flexor and extensor motoneuron pools of both sides of the spinal cord. Their diffuse location made convenient to use bath-applied substances in the attempt to selectively block distinct membrane processes operating through the network. Application of apamin (0.4 μM) shortened both cycle period and burst duration without changing their regular rhythmicity. Similar results were obtained with carbachol (10 μM). Cs+ (4 mM) reversibly hyperpolarized the motoneuron membrane potential and largely increased burst duration, which was characterized by a long series of repetitive oscillatory waves. Cycle period and rhythmicity remained unaltered. Ouabain (10 μM), strophanthidin (4 μM), or K+-free solutions disrupted rhythmic bursting, which was fragmented into irregularly occurring paroxysmal activity mixed with short depolarizing events, still developing simultaneously on both sides of the spinal cord. Bursting activity eventually ceased after ∼30–40 min of application of ouabain or strophanthidin. Prolonged washout of strophanthidin or K+-free solutions reestablished regular bursting patterns, whereas no recovery from ouabain was observed. At the time of strong depression of bursting, it was still possible to evoke bursts by single electrical pulses applied to the segmental dorsal root. Antidromic spikes of motoneurons could still be evoked by ventral root stimulation. These results demonstrate that, in a spinal bursting network mainly made up by excitatory processes, blockers of slow Ca2+-dependent K+ currents, such as apamin or carbachol, or of the slow inward rectifier, such as Cs+, did not suppress rhythmicity, suggesting that these conductances simply contributed to control cycle period and/or burst duration. Conversely, pharmacological blockers of the electrogenic Na+ pump such as ouabain, strophanthidin, or K+-free solutions severely disrupted all characteristics of rhythmic bursting. It is proposed that the operation of the electrogenic Na+ pump of premotoneurons was a crucial element for rhythmic bursting.Keywords
This publication has 25 references indexed in Scilit:
- Experimentally derived model for the locomotor pattern generator in the Xenopus embryo.The Journal of Physiology, 1995
- Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cordJournal of Neurophysiology, 1995
- Desensitization of AMPA Receptors Limits the Amplitude of EPSPs and the Excitability of Motoneurons of the Rat Isolated Spinal CordEuropean Journal of Neuroscience, 1995
- A Study of the Barium‐sensitive and ‐insensitive Components of the Action of Thyrotropin‐releasing Hormone on Lumbar Motoneurons of the Rat Isolated Spinal CordEuropean Journal of Neuroscience, 1993
- Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat.The Journal of Physiology, 1992
- Slow depolarizing afterpotentials in neocortical neurons are sodium and calcium dependentNeuroscience Letters, 1992
- Calcium transport and buffering in neuronsTrends in Neurosciences, 1988
- The effect of changing extracellular potassium concentration on synaptic transmission in isolated spinal cordsBrain Research, 1988
- Voltage‐sensitive outward currents in cat motoneurones.The Journal of Physiology, 1980
- Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump.The Journal of Physiology, 1980