Alternative Splicing Generates Four Different Forms of a Non-Transmembrane Protein Tyrosine Phosphatase mRNA
- 1 December 1995
- journal article
- Published by Mary Ann Liebert Inc in DNA and Cell Biology
- Vol. 14 (12) , 1007-1015
- https://doi.org/10.1089/dna.1995.14.1007
Abstract
PTP-S is a widely expressed non-transmembrane protein tyrosine phosphatase (PTPase), which binds to DNA in vitro. The cellular PTP-S gene product is present mainly in the nucleus in association with chromatin. cDNAs related to PTP-S have been described from human and mouse cells. To establish the origin of molecular diversity in these cDNAs, genomic clones of rat PTP-S were isolated that span over 40 kb of the gene and contain 7 axons. The exon-intron splice sites in the catalytic domain are conserved between PTP-S and human PTP1B. Sequences specific to and homologous to human T-cell PTPase (TC-PTP) were found in the genomic clones of PTP-S, which are expressed in rat cells, as determined by using a specific probe and Northern blot analysis. Analysis of RNA from different rat tissues by reverse transcription-polymerase chain reaction (RT-PCR) showed the presence of four different forms of PTP-S mRNA (named PTP-S1, PTP-S2, PTP-S3, and PTP-S4). PTP-S1 is same as PTP-S reported previously by us. PTP-S2, which is the major form, differs from PTP-S1 in having additional 19 amino acids corresponding to exon E1. PTP-S4 is similar to human T-cell phosphatase. PTP-S3 differs from PTP-S4 in having a deletion of 19 amino acids corresponding to exon E1. Our results suggest that four different forms of PTP-S mRNA arise from a single gene by differential splicing. Two of these forms, PTP-S1 and PTP-S3, were not found in human cells, possibly due to the loss of an internal splice acceptor site in one of the exons, suggesting the occurrence of species-specific splicing in this gene.Keywords
This publication has 25 references indexed in Scilit:
- ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address’Trends in Biochemical Sciences, 1994
- Tethering, targeting and triggering of protein phosphatasesTrends in Cell Biology, 1994
- Stabilization of a protein-tyrosine phosphatase mRNA upon mitogenic stimulation of T-lymphocytesBiochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1993
- Leukocyte Common Antigen-Related Phosphatase (LRP) Gene Structure: Conservation of the Genomic Organization of Transmembrane Protein Tyrosine PhosphatasesGenomics, 1993
- Binding of a protein tyrosine phosphatase to DNA through its carboxy-terminal noncatalytic domainBiochemistry, 1993
- 1002 Protein Phosphatases?Annual Review of Cell Biology, 1992
- Protein Tyrosine Phosphatases: A Diverse Family of Intracellular and Transmembrane EnzymesScience, 1991
- Molecular cloning and expresion of a protein‐tyrosine phosphatase showing homology with transcription factors Fos and JunFEBS Letters, 1991
- Complementation of the Mitotic Activator, p80
cdc25
, by a Human Protein-tyrosine PhosphataseScience, 1990
- The alternative splicing product αAins-crystallin is structurally equivalent to αA and αB subunits in the rat α-crystallin aggregateBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1990