Abstract
Hartman proved that a diffeomorphism is topologically conjugate to a linear map on a neighbourhood of a hyperbolic fixed point ([3]). In this paper we study the topological conjugacy problem of a diffeomorphism on a neighbourhood of a hyperbolic set, and prove that for any hyperbolic set there is an arbitrarily slight extension to which a sub-shift of finite type is semi-conjugate.

This publication has 5 references indexed in Scilit: