The molecular function of Ase1p

Abstract
The midzone is the domain of the mitotic spindle that maintains spindle bipolarity during anaphase and generates forces required for spindle elongation (anaphase B). Although there is a clear role for microtubule (MT) motor proteins at the spindle midzone, less is known about how microtubule-associated proteins (MAPs) contribute to midzone organization and function. Here, we report that budding yeast Ase1p is a member of a conserved family of midzone-specific MAPs. By size exclusion chromatography and velocity sedimentation, both Ase1p in extracts and purified Ase1p behaved as a homodimer. Ase1p bound and bundled MTs in vitro. By live cell microscopy, loss of Ase1p resulted in a specific defect: premature spindle disassembly in mid-anaphase. Furthermore, when overexpressed, Ase1p was sufficient to trigger spindle elongation in S phase–arrested cells. FRAP revealed that Ase1p has both a very slow rate of turnover within the midzone and limited lateral diffusion along spindle MTs. We propose that Ase1p functions as an MT cross-bridge that imparts matrix-like characteristics to the midzone. MT-dependent networks of spindle midzone MAPs may be one molecular basis for the postulated spindle matrix.