Supramolecular p−n-Heterojunctions by Co-Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes

Abstract
Comparative studies on hydrogen-bonded versus covalently linked donor−acceptor−donor dye arrays obtained from oligo(p-phenylene vinylene)s (OPVs) as donor and bay-substituted perylene bisimides (PERYs) as acceptor dyes are presented. Both systems form well-ordered J-type aggregates in methylcyclohexane, but only hydrogen-bonded arrays afford hierarchically assembled chiral OPV−PERY dye superstructures consisting of left-handed helical π−π co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study). In the case of hydrogen-bonded arrays, the stability of the aggregates in solution increases with increasing conjugation length of the OPV unit. The well-defined co-aggregated dyes presented here exhibit photoinduced electron transfer on subpicosecond time scale, and thus, these supramolecular entities might serve as valuable nanoscopic functional units.