Abstract
Over the past decade, research interest has risen on the direct effects of temperature on exercise capacity and tolerance, particular in the heat. Two major paradigms have been proposed for how hyperthermia may contribute to voluntary fatigue during exercise in the heat. One suggests that voluntary exhaustion occurs upon the approach or attainment of a critical internal temperature through impairment in a variety of physiological systems. An alternate perspective proposes that thermal inputs modulate the regulation of self-paced workload to minimize heat storage. This review seeks to summarize recent research leading to the development of these two models for hyperthermia and fatigue and explore possible bridges between them. Key areas for future research and development into voluntary exhaustion in the heat include (i) the development of valid and non-invasive means to measure brain temperature, (ii) understanding variability in perception and physiological responses to heat stress across individuals, (iii) extrapolating laboratory studies to field settings, (iv) understanding the failure in behavioural and physiological thermoregulation that leads to exertional heat illness, and (v) the integration of physiological and psychological parameters limiting voluntary exercise in the heat.