MRI and histological analysis of beta‐amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice
Open Access
- 22 April 2009
- journal article
- research article
- Published by Wiley in Journal of Magnetic Resonance Imaging
- Vol. 29 (5) , 997-1007
- https://doi.org/10.1002/jmri.21731
Abstract
Purpose To investigate the relationship between MR image contrast associated with beta‐amyloid (Aβ) plaques and their histology and compare the histopathological basis of image contrast and the relaxation mechanism associated with Aβ plaques in human Alzheimer's disease (AD) and transgenic APP/PS1 mouse tissues. Materials and Methods With the aid of the previously developed histological coil, T‐weighted images and R parametric maps were directly compared with histology stains acquired from the same set of Alzheimer's and APP/PS1 tissue slices. Results The electron microscopy and histology images revealed significant differences in plaque morphology and associated iron concentration between AD and transgenic APP/PS1 mice tissue samples. For AD tissues, T contrast of Aβ‐plaques was directly associated with the gradation of iron concentration. Plaques with significantly less iron load in the APP/PS1 animal tissues are equally conspicuous as the human plaques in the MR images. Conclusion These data suggest a duality in the relaxation mechanism where both high focal iron concentration and highly compact fibrillar beta‐amyloid masses cause rapid proton transverse magnetization decay. For human tissues, the former mechanism is likely the dominant source of R relaxation; for APP/PS1 animals, the latter is likely the major cause of increased transverse proton relaxation rate in Aβ plaques. The data presented are essential for understanding the histopathological underpinning of MRI measurement associated with Aβ plaques in humans and animals. J. Magn. Reson. Imaging 2009;29:997–1007.Keywords
This publication has 58 references indexed in Scilit:
- Alzheimer disease models and human neuropathology: similarities and differencesActa Neuropathologica, 2007
- Methyl dynamics of the amyloid-β peptides Aβ40 and Aβ42Biochemical and Biophysical Research Communications, 2007
- Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Aβ42 peptideProceedings of the National Academy of Sciences, 2006
- Deposition of mouse amyloid β in human APP/PS1 double and single AD model transgenic miceNeurobiology of Disease, 2006
- 3D structure of Alzheimer's amyloid-β(1–42) fibrilsProceedings of the National Academy of Sciences, 2005
- Looking for biogenic magnetite in brain ferritin using NMR relaxometryNMR in Biomedicine, 2005
- Copper selectively triggers β-sheet assembly of an N-terminally truncated amyloid β-peptide beginning with Glu3Journal of Inorganic Biochemistry, 2004
- A vector for expressing foreign genes in the brains and hearts of transgenic miceGenetic Analysis: Biomolecular Engineering, 1996
- The relation between brain iron and NMR relaxation times: An in vitro studyMagnetic Resonance in Medicine, 1996
- Ten to fourteen residue peptides of Alzheimer's disease protein are sufficient for amyloid fibril formation and its characteristic xray diffraction patternBiochemical and Biophysical Research Communications, 1987