Genetic control of chalcone-flavanone isomerase activity in Callistephus chinensis

Abstract
A mutant blocked in anthocyanin synthesis leads to an accumulation of 4,2′,4′,6′-tetrahydroxy-chalcone-2′-glucoside (isosalipurposide) in blossoms of Callistephus chinesis (L.) Nees, whereas in geno-types with the wild-type allele, higher oxidized flavonoids and anthocyanins are synthesized. Measurements of chalcone-flavanone isomerase activity of 18 lines of Callistephus chinensis showed a clear correlation between accumulation of chalcone in the recessive genotypes (ch ch) and deficiency of this enzyme activity. Both the chemogenetic and the enzymologic evidence lead to the following conclusions: 1. The first product of the synthesis of the flavonoid skeleton should be tetrahydroxychalcone.-2. The chalcone-flavanone isomerase catalyzes the formation of flavanone from chalcone in a stereospecific way and there-with furnishes the substrate for the further reactions in the flavonoid biosynthesis.