Effect of hydrogen on surface roughening during Si homoepitaxial growth

Abstract
Hydrogen is shown to have a strong influence on the evolution of surface morphology during low temperature (310 °C) Si(100) homoepitaxy. Molecular beam epitaxy growth in the presence of deuterium shows a surface roughness within the epitaxial film that increases rapidly until the Si film exhibits a crystalline to amorphous transition. The rate at which the surface roughens depends critically on the partial pressure of deuterium. Although the kinetics of growth are sensitive to small pressures (4×10−8 Torr) of D, it appears that the breakdown of epitaxy does not result from a ‘‘critical’’ D concentration at the surface. This work suggests that the crystalline to amorphous transition, instead, results from increased roughening during epitaxy