Somatic cells efficiently join unrelated DNA segments end-to-end.
Open Access
- 1 October 1982
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 2 (10) , 1258-1269
- https://doi.org/10.1128/mcb.2.10.1258
Abstract
Molecular substrates for probing nonhomologous recombination in somatic cells were constructed by inserting pBR322 sequences at selected sites on the simian virus 40 (SV40) genome. The chimeric products are too large to be packaged into an SV40 capsid. Therefore, production of viable progeny requires that most of the pBR322 sequences be deleted without altering any SV40 sequences that are essential for lytic infection. As judged by plaque assay, these recombination events occur at readily detectable frequencies after transfection into CV1 monkey kidney cells. Depending on the site of pBR322 insertion, the infectivities of the full-length circular or linear chimeras ranged from 0.02 to 2% of the infectivity of linear wild-type SV40 DNA. Nucleotide sequence analysis of several recombinant progeny revealed three distinct classes of recombination junction and indicated that the causative recombination events were minimally dependent on sequence homology. Potential mechanisms involving recombination at internal sites or at ends were distinguished by measuring the infectivity of chimeric molecules from which various lengths of pBR322 had been removed. These data support end-to-end joining as the primary mechanism by which DNA segments recombine nonhomologously in somatic cells. This end joining appears to be very efficient, since SV40 genomes with complementary single-stranded tails or with short non-complementary pBR322 tails were comparably infectious. Overall, this study indicates that mammalian somatic cells are quite efficient at the willy-nilly end-to-end joining of unrelated DNA segments.This publication has 45 references indexed in Scilit:
- Inhibition of SV40 replication in simian cells by specific pBR322 DNA sequencesNature, 1981
- Recombination between short DNA homologies causes tandem duplicationNature, 1981
- rII cistrons of bacteriophage T4Journal of Molecular Biology, 1981
- Visualization of genetic recombination intermediates of human adenovirus type 2 DNA from infected HeLa cellsNature, 1980
- Characteristics of an SV40-plasmid recombinant and its movement into and out of the genome of a murine cellCell, 1980
- Transposable elementsCell, 1980
- Integration and excision of SV40 DNA from the chromosome of a transformed cellCell, 1980
- Genetic studies of the lac repressorJournal of Molecular Biology, 1978
- The Genome of Simian Virus 40Science, 1978
- Calcium-dependent bacteriophage DNA infectionJournal of Molecular Biology, 1970