Respondent-Driven Sampling: An Assessment of Current Methodology
Preprint
- 12 April 2009
Abstract
Respondent-Driven Sampling (RDS) employs a variant of a link-tracing network sampling strategy to collect data from hard-to-reach populations. By tracing the links in the underlying social network, the process exploits the social structure to expand the sample and reduce its dependence on the initial (convenience) sample. The primary goal of RDS is typically to estimate population averages in the hard-to-reach population. The current estimates make strong assumptions in order to treat the data as a probability sample. In particular, we evaluate three critical sensitivities of the estimators: to bias induced by the initial sample, to uncontrollable features of respondent behavior, and to the without-replacement structure of sampling. This paper sounds a cautionary note for the users of RDS. While current RDS methodology is powerful and clever, the favorable statistical properties claimed for the current estimates are shown to be heavily dependent on often unrealistic assumptions.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: