Influence of Dilution Rate on Enzymes of Intermediary Metabolism in Two Freshwater Bacteria Grown in Continuous Culture

Abstract
Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate dehydrogenase and glucose 6-phosphate dehydrogenase activities increased up to 10-fold as the dilution rate (D) was decreased from 0.5 to 0.02 h-1, regardless of whether the growth-limiting nutrient was C, ammonium or phosphate. 2-Oxoglutarate dehydrogenase and succinate dehydrogenase activities were not influenced by D and NADH oxidase activity increased with D. Spirillum sp. gave different results in some respects, but it also exhibited an increase in the activity of several enzymes at low D values. Such increases may emanate from release of catabolite repression and catabolite repressors for the 5 enzymes in Pseudomonas sp. showing such increases are probably compounds of C, N and P. It is likely that increased enzyme syntheses in low D cultures represent the normal physiological state for bacteria in aquatic environments where growth occurs slowly under nutrient limitations. Such increases probably permit a more effective utilization of nutrients present at sub-saturating concentrations.