CCR5 Binds Multiple CC-Chemokines: MCP-3 Acts as a Natural Antagonist
Open Access
- 15 September 1999
- journal article
- Published by American Society of Hematology in Blood
- Vol. 94 (6) , 1899-1905
- https://doi.org/10.1182/blood.v94.6.1899
Abstract
CCR5 was first characterized as a receptor for MIP-1, MIP-1β, and RANTES, and was rapidly shown to be the main coreceptor for M-tropic human immunodeficiency virus (HIV)-1 strains and simian immunodeficiency virus (SIV). Chemokines constitute a rapidly growing family of proteins and receptor-chemokine interactions are known to be promiscuous and redundant. We have therefore tested whether other CC-chemokines could bind to and activate CCR5. All CC-chemokines currently available were tested for their ability to compete with [125I]-MIP-1β binding on a stable cell line expressing recombinant CCR5, and/or to induce a functional response in these cells. We found that in addition to MIP-1β, MIP-1, and RANTES, five other CC-chemokines could compete for [125I]-MIP-1β binding: MCP-2, MCP-3, MCP-4, MCP-1, and eotaxin binding was characterized by IC50 values of 0.22, 2.14, 5.89, 29.9, and 21.7 nmol/L, respectively. Among these ligands, MCP-3 had the remarkable property of binding CCR5 with high affinity without eliciting a functional response, MCP-3 could also inhibit the activation of CCR5 by MIP-1β and may therefore be considered as a natural antagonist for CCR5. It was unable to induce significant endocytosis of the receptor. Chemokines that could compete with high affinity for MIP-1β binding could also compete for monomeric gp120 binding, although with variable potencies; maximal gp120 binding inhibition was 80% for MCP-2, but only 30% for MIP-1β. MCP-3 could compete efficiently for gp120 binding but was, however, found to be a weak inhibitor of HIV infection, probably as a consequence of its inability to downregulate the receptor.Keywords
This publication has 30 references indexed in Scilit:
- A Conserved HIV gp120 Glycoprotein Structure Involved in Chemokine Receptor BindingScience, 1998
- Chemokine Receptors: Keys to AIDS Pathogenesis?Cell, 1998
- Blockade of CC chemokine receptor 5 (CCR5)-tropic human immunodeficiency virus-1 replication in human lymphoid tissue by CC chemokines.Journal of Clinical Investigation, 1998
- A new classification for HIV-1Nature, 1998
- CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5Nature, 1996
- CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5Nature, 1996
- Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor geneNature, 1996
- Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 InfectionCell, 1996
- Molecular Cloning and Functional Expression of a New Human CC-Chemokine Receptor GeneBiochemistry, 1996
- Identification of RANTES, MIP-1α, and MIP-1β as the Major HIV-Suppressive Factors Produced by CD8 + T CellsScience, 1995