Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABAA receptor‐channel kinetic behavior
Open Access
- 1 May 2007
- journal article
- Published by Wiley in European Journal of Neuroscience
- Vol. 25 (9) , 2726-2740
- https://doi.org/10.1111/j.1460-9568.2007.05530.x
Abstract
GABAA receptor subtypes comprising the α1 and α3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been fully elucidated. Therefore, we expressed rat α1β2γ2 and α3β2γ2 receptors in human embryonic kidney 293 cells and recorded current responses to ultrafast GABA applications at macroscopic and single‐channel levels. We found that the slow deactivation of α3β2γ2‐mediated currents is associated with a relatively small rate and extent of apparent desensitization. In contrast, responses mediated by α1β2γ2 receptors had faster deactivation and stronger desensitization. α3β2γ2 receptors had faster recovery in the paired‐pulse agonist applications than α1β2γ2 channels. The onset of currents mediated by α3β2γ2 receptors was slower than that of α1β2γ2 for a wide range of GABA concentrations. Single‐channel analysis did not reveal differences in the opening/closing kinetics of α1β2γ2 and α3β2γ2 channels but burst durations were longer in α3β2γ2 receptors. Simulation with a previously reported kinetic model was used to explore the differences in respective rate constants. Reproduction of major kinetic differences required a smaller desensitization rate as well as smaller binding and unbinding rates in α3β2γ2 compared with α1β2γ2 receptors. Our work describes the mechanisms underlying the kinetic differences between two major GABAA receptor subtypes and provides a framework to interpret data from native GABA receptors.Keywords
This publication has 34 references indexed in Scilit:
- Developmental Changes of GABA Synaptic Transient in Cerebellar Granule CellsMolecular Pharmacology, 2005
- Classic Benzodiazepines Modulate the Open–Close Equilibrium in α1β2γ2Lγ-Aminobutyric Acid Type A ReceptorsAnesthesiology, 2005
- Dynamism of GABAA receptor activation shapes the “personality” of inhibitory synapsesNeuropharmacology, 2004
- Expression of Distinct α Subunits of GABAAReceptor Regulates Inhibitory Synaptic StrengthJournal of Neurophysiology, 2004
- Genetic manipulations of GABAA receptor in mice make inhibition excitingPharmacology & Therapeutics, 2004
- Four Amino Acids in the α Subunits Determine the γ-Aminobutyric Acid Sensitivities of GABAA Receptor SubtypesPublished by Elsevier ,2004
- Binding Sites, Singly Bound States, and Conformation Coupling Shape GABA-Evoked CurrentsJournal of Neurophysiology, 2003
- Developmental change in GABAA receptor desensitization kinetics and its role in synapse function in rat cortical neuronsThe Journal of Physiology, 2000
- Receptor system response kinetics reveal functional subtypes of native murine and recombinant human GABAA receptorsThe Journal of Physiology, 1999
- Transmitter timecourse in the synaptic cleft: its role in central synaptic functionTrends in Neurosciences, 1996