Change in Chemoattractant Responsiveness of Developing Axons at an Intermediate Target

Abstract
Developing axons reach their final targets as a result of a series of axonal projections to successive intermediate targets. Long-range chemoattraction by intermediate targets plays a key role in this process. Growing axons, however, do not stall at the intermediate targets, where the chemoattractant concentration is expected to be maximal. Commissural axons in the metencephalon, initially attracted by a chemoattractant released from the floor plate, were shown to lose responsiveness to the chemoattractant when they crossed the floor plate in vitro. Such changes in axon responsiveness to chemoattractants may enable developing axons to continue to navigate toward their final destinations.