Abstract
2-Methyl-1, 3-cyclopentanedione (C6H8O2-enol form) crystals have been studied at high pressures to 3.01(5) GPa by single crystal X-ray diffraction. The pressure dependence of the unit-cell dimensions is strongly anisotropic and non-linear, the largest relative changes are observed for & perpendicular to the planes comprising the planar chains of the hydrogen-bonded molecules. The crystal structure has been determined at 1.50, 2.40 and 3.01 GPa. The structure is very stable, the main structural change with pressure is the compression of intermolecular distances including the O … O hydrogen bond—but the position of the molecule in the unit cell remains unchanged. Some systematic changes of the bond lengths (in the limit of statistical significance) can be noted. The structure has been compared with the structures of 1,3-cyclopentanedione and 1,3-cyclohexanedione (enol forms), both undergoing pressure induced phase transitions. The exceptional stability of the 2-methyl- 1,3-cyclopentanedione crystal can be explained on the basis of its structure: energetically favourable orientation of the dipole moments of the molecules of close neighbouring chains. The R-factor/number of unique reflections for the structure determinations at 1.50, 2.40 and 3.01 GPa are 0.103/153,0.093/142 and 0.097/139, respectively. Over 3.01 GPa the unit cell is compressed to less than 84% of its ambient-pressure volume. The root-mean-square displacements of the atoms decreased on average by the factor of 0.75 at 1.50 GPa and 0.74 at 2.40 and 3.01 GPa.