Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate

Abstract
The microflora of a shallow anoxic aquifer underlying a municipal landfill in Oklahoma was characterized by direct light microscopy, most probable number determinations of sulfate reducers and methanogens, and measurements of methanogenesis in aquifer samples containing either endogenous or exogenous electron donors and various sulfate concentrations. Acridine orange direct counts of bacteria did not vary significantly with time or between 2 major sampling areas (1.70±0.16×107 to 11.2±2.1×107 cells/gdw). One site (B) was high in organic matter and low in sulfate, and methanogens generally outnumbered sulfate-reducers at most times of the year, whereas the opposite was true for another site (A). Greater than 75% of the theoretical amount of methane was detected within 7 weeks in both site A and B aquifer slurries amended with noncompetitive electron donors like methanol and trimethylamine. However, only site B slurries efficiently converted competitive donors like acetate, H2, and formate to the expected amount of methane. A mapping of sulfate and methane levels indicated that site A is relatively localized. These results suggest that the predominant flow of carbon and energy is through methanogenesis at aquifer site B whereas sulfate reduction predominated at site A. However, both methanogens and sulfate reducers could be isolated from either site.