Abstract
Cyclic stratigraphic sequences in shallow marine records are commonly characterized by a condensed transgressive lag at the base of thicker, shallowing-upward facies. The standard actualistic model for these thin fossiliferous lags, by which most of the shelf is starved owing to coastal trapping of sediment and fossils are suspected of being reworked because of the association with an erosional ravinement, is contradicted by detailed stratigraphic and taphonomic analysis of Miocene examples in the Maryland coastal plain. The four major shell deposits in the Miocene record are condensed (i.e., demonstrably thin relative to coeval strata), transgressive records of intertidal to subtidal environments (to storm wavebase) and are composed of shells produced locally as transgression proceeded. The complex internal stratigraphies of the shell deposits and the mixture of soft- and shell-bottom faunas indicate condensation under a regime of dynamic bypassing rather than complete sediment starvation; bypassed fine sediments accumulated in deeper water environments below storm wavebase. Deeper, even more basinward parts of the shelf were starved of all sediment size fractions and accumulated shell-poor, bone-rich condensed deposits that lie mid-cycle (bracketing the time of maximum water depth). The base-of-cycle shell deposits and mid-cycle bone bed differ not only in composition and in environment and dynamics of condensation, but also in chronostratigraphic value: the onlapping shell deposits must be diachronous to some degree, whereas the mid-cycle bone bed approximates an isochronous marker for correlation. Thus, in some settings at least, transgressive shelves present a spatial mosaic of condensational and depositional regimes. Regardless of origin, all condensed intervals can time-average assemblages and telescope biostratigraphic datums. They otherwise differ widely, however, in paleontologic attributes and are characterized by highly variable and complex stratigraphic anatomies.