Abstract
In order to analyze the mechanisms of biological radiation effects, the events after radiation energy absorption in irradiated organisms have to be studied by physico-chemical and biochemical methods. The radiation effects in vitro on biomolecules, especially DNA, are described, as well as their alterations in irradiated cells. Whereas in vitro, in aqueous solution, predominantly OH radicals are effective and lead to damage in single moieties of the DNA, in vivo the direct absorption of radiation energy leads to ‘locally multiply-damaged sites’, which produce DNA double-strand breaks and locally denatured regions. DNA damage will be repaired in irradiated cells. Error free repair leads to the original nucleotide sequence in the genome by excision or by recombination. “Error prone repair” (mutagenic repair), leads to mutation. However, the biochemistry of these processes, regulated by a number of genes, is poorly understood. In addition, more complex reactions, such as gene amplification and transposition of mobile gene elements, are responsible for mutation or malignant transformation.

This publication has 62 references indexed in Scilit: