Best uniform rational approximation of 𝑥^{𝛼} on [0,1]
- 1 January 1993
- journal article
- Published by American Mathematical Society (AMS) in Bulletin of the American Mathematical Society
- Vol. 28 (1) , 116-122
- https://doi.org/10.1090/s0273-0979-1993-00351-3
Abstract
A strong error estimate for the uniform rational approximation of x α {x^{\alpha }} on [0, 1] is given, and its proof is sketched. Let E n n ( x α , [ 0 , 1 ] ) {E_{nn}}({x^\alpha },[0,1]) denote the minimal approximation error in the uniform norm. Then it is shown that \[ lim x → ∞ e 2 π α n E n n ( x α , [ 0 , 1 ] ) = 4 1 + α | sin π α | \lim \limits _{x \to \infty } {e^{2\pi \sqrt {\alpha n} }}{E_{nn}}({x^\alpha },[0,1]) = {4^{1 + \alpha }}|\sin \pi \alpha | \] holds true for each α > 0 {\alpha > 0} .
Keywords
All Related Versions
This publication has 12 references indexed in Scilit:
- NUMERICAL RESULTS ON BEST UNIFORM RATIONAL APPROXIMATION OF $ \vert x\vert$ ON $ \lbrack-1,\,+1\rbrack$Mathematics of the USSR-Sbornik, 1993
- BEST UNIFORM RATIONAL APPROXIMATION OF $ \vert x\vert$ ON $ \lbrack-1,\,1\rbrack$Sbornik: Mathematics, 1993
- On the bernstein conjecture in approximation theoryConstructive Approximation, 1985
- ON THE APPROXIMATION OF $ x^\alpha$ BY RATIONAL FUNCTIONSMathematics of the USSR-Izvestiya, 1981
- Rational approximation to 19-0119-0119-01on [0, 1]Analysis Mathematica, 1979
- ON MARKOV'S THEOREM FOR MULTIPOINT PADÉ APPROXIMANTSMathematics of the USSR-Sbornik, 1978
- Rational approximation to xaJournal of Approximation Theory, 1976
- Rational approximation tox αActa Mathematica Hungarica, 1967
- Rational approximation to $| x| $.The Michigan Mathematical Journal, 1964
- Sur la meilleure approximation de |x| par des polynomes de degrés donnésActa Mathematica, 1914