LIQUID-LIQUID EXTRACTION IN A HOLLOW-FIBER DEVICE

Abstract
Liquid-liquid extraction operations were conducted in a hollow fiber mass transfer device using two systems: phenol/water vs. n-octanol and phenol/hexane vs. water. Individual mass transfer resistances due to the tube-side fluid, the hollow fiber wall (membrane), and the shell-side fluid were determined for runs in which the solvent was held stagnant on the shell-side. Countercurrent flow runs with moving solvent were conducted to show that the degree of extraction rises steadily as the solvent-to-raffinate ratio increases. Factors affecting the mass transfer resistances in this type of device are discussed, and the advantages of hollow fiber units over conventional mixer-settler units are pointed out.

This publication has 3 references indexed in Scilit: