Application of Heat Transfer Data to Arc Characteristics
- 15 June 1939
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 55 (12) , 1184-1191
- https://doi.org/10.1103/PhysRev.55.1184
Abstract
The chief experimental results of a study of the electric gradient (v/cm) and current density (amp./) in the arc in various gases and pressures can be correlated by means of conduction-convection heat loss data from solid bodies in fluids, and lead to an explanation of the variation of and with current and pressure which is in good agreement with the measurements. For this purpose we neglect radiation and use an equation of the Nusselt type where per unit length of arc column; ; ; ; coefficient; and . In the range of interest in arcs , where is a satisfactory approximation. On the assumption that (1) the heat loss from the arc column is given by an equation of the Nusselt type and (2) the variation of arc temperature with is a small effect, the relation at constant is found to be where . The exponent for nitrogen =0.6, while the . When varies, the arc temperature variation becomes important and the effect is included implicitly in the theory, leading to , and . From heat transfer data and arc experiments we find that , , , and . For cases of forced convection we apply correlation data for forced convection cooling in the form , where is the fluid velocity. As above, this leads to the expression for an arc in forced convection where . The exponent , while is not known. For arcs in a variable gravity field (as in the experiments of Steenbeck), we find where . The , while is not known.
Keywords
This publication has 13 references indexed in Scilit:
- High Pressure Arcs in Common Gases in Free ConvectionPhysical Review B, 1939
- Über eine kombination der hydrodynamischen theorie des wärmeübergangs und der langmuirschen theoriePhysica, 1937
- Der gradient der hochdruckentladung in verschiedenen metalldämpfenPhysica, 1937
- Die gesamtstrahlung der quecksilber hochdruckentladung als funktion der leistung, des durchmessers und des druckesPhysica, 1937
- Der gradient der überhochdruck-quecksilber, entladungPhysica, 1937
- Die totalstrahlung der super-hochdruck-quecksilberentladungPhysica, 1935
- Der gradient der quecksilber-hochdruckentladung als funktion von druck, durchmesser und stromstärkePhysica, 1935
- Temperatur und gradient des quecksilberbogensPhysica, 1935
- Ähnlichkeitsgesetze der hochdruckentladungPhysica, 1935
- Die Temperatur des QuecksilberbogensPhysica, 1934