Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections
- 1 March 1994
- journal article
- Published by Wiley in Journal of Microscopy
- Vol. 173 (3) , 245-256
- https://doi.org/10.1111/j.1365-2818.1994.tb03447.x
Abstract
This study describes a technique for noninvasive determination of the surface area and volume of chondrocytes using the confocal scanning laser microscope, and the fundamental limitations associated with its application. Using geometric modelling principles, an isointensity surface contour was formed from a series of optical sections recorded with the confocal microscope. Using a combined surface- and volume-based algorithm, the surface area, volume and other morphometric descriptions were calculated from a polygonal description of the cell surface. The high image contrast required for repeatable identification of the cell border was achieved through the use of a fluorescent dye, which was excluded from cells by an intact membrane. Calibration results indicated that the theoretical modelling algorithm is relatively precise when applied to simulated convex (ellipsoidal) cells, with overall errors of less than 0·5% in surface area and volume measurements. When applied to low-noise, high-contrast volume data recorded on the confocal microscope, typical coefficients of variation of 2–4% were determined for length measurements, 2–5% for volume measurements and 3–6% for surface area measurements either for latex microspheres or for chondrocytes. While the precision of the method is comparable to standard histological techniques, its accuracy is difficult to assess, as systematic errors are unpredictable and may be introduced from several sources.Keywords
This publication has 30 references indexed in Scilit:
- Geostatistical and morphological methods applied to three‐dimensional microscopyJournal of Microscopy, 1992
- Activation of ion transport pathways by changes in cell volumeBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1991
- An interactive image analysis system for mean particle volume estimation using stereological principlesJournal of Microscopy, 1989
- Axial resolution of confocal fluorescence microscopyJournal of Microscopy, 1989
- Optical sectioning in confocal fluorescent microscopesJournal of Microscopy, 1989
- Quantitation of structural features characterizing weight‐ and less‐weight‐bearing regions in articular cartilage: A stereological analysis of medical femoral condyles in young adult rabbitsThe Anatomical Record, 1988
- Influence of cytochalasin d-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytesExperimental Cell Research, 1988
- A survey of curve and surface methods in CAGDComputer Aided Geometric Design, 1984