Abstract
A Lagrangean-type numerical forecasting method is developed in which the computational (grid) points are advected by the wind and the necessary space derivatives (in the pressure gradient terms, for example) are computed using the values of the variables at all the computation points that at the particular moment are within a prescribed distance of the point for which the computation is done. In this way, the forecasting problem reduces to solving the ordinary differential equations of motion and thermodynamics for each computation point, instead of solving the partial differential equations in the Eulerian or classical Lagrangean way. The method has some advantages over the conventional Eulerian scheme: simplicity (there are no advection terms), lack of computational dispersion in the advection terms and therefore better simulation of atmospheric advection and deformation effects, very little inconvenience due to the spherical shape of the earth, and the possibility for a variable space resoluti... Abstract A Lagrangean-type numerical forecasting method is developed in which the computational (grid) points are advected by the wind and the necessary space derivatives (in the pressure gradient terms, for example) are computed using the values of the variables at all the computation points that at the particular moment are within a prescribed distance of the point for which the computation is done. In this way, the forecasting problem reduces to solving the ordinary differential equations of motion and thermodynamics for each computation point, instead of solving the partial differential equations in the Eulerian or classical Lagrangean way. The method has some advantages over the conventional Eulerian scheme: simplicity (there are no advection terms), lack of computational dispersion in the advection terms and therefore better simulation of atmospheric advection and deformation effects, very little inconvenience due to the spherical shape of the earth, and the possibility for a variable space resoluti...

This publication has 0 references indexed in Scilit: