Toward a Seasonally Ice-Covered Arctic Ocean: Scenarios from the IPCC AR4 Model Simulations

Top Cited Papers
Open Access
Abstract
The sea ice simulations by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models for the climate of the twentieth century and for global warming scenarios have been synthesized. A large number of model simulations realistically captured the climatological annual mean, seasonal cycle, and temporal trends of sea ice area over the Northern Hemisphere during 1979–99, although there is considerable scatter among the models. In particular, multimodel ensemble means show promising estimates very close to observations for the late twentieth century. Model projections for the twenty-first century demonstrate the largest sea ice area decreases generally in the Special Report on Emission Scenarios (SRES) A1B and A2 scenarios compared with the B1 scenario, indicating large multimodel ensemble mean reductions of −3.54 ± 1.66 × 105 km2 decade−1 in A1B, −4.08 ± 1.33 × 105 km2 decade−1 in A2, and −2.22 ± 1.11 × 105 km2 decade−1 in B1. The corresponding percentage reductions are... Abstract The sea ice simulations by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) models for the climate of the twentieth century and for global warming scenarios have been synthesized. A large number of model simulations realistically captured the climatological annual mean, seasonal cycle, and temporal trends of sea ice area over the Northern Hemisphere during 1979–99, although there is considerable scatter among the models. In particular, multimodel ensemble means show promising estimates very close to observations for the late twentieth century. Model projections for the twenty-first century demonstrate the largest sea ice area decreases generally in the Special Report on Emission Scenarios (SRES) A1B and A2 scenarios compared with the B1 scenario, indicating large multimodel ensemble mean reductions of −3.54 ± 1.66 × 105 km2 decade−1 in A1B, −4.08 ± 1.33 × 105 km2 decade−1 in A2, and −2.22 ± 1.11 × 105 km2 decade−1 in B1. The corresponding percentage reductions are...