1H NMR Studies of Mouse Ribonucleotide Reductase: The R2 Protein Carboxyl-Terminal Tail, Essential for Subunit Interaction, Is Highly Flexible but becomes Rigid in the Presence of Protein R1
- 15 March 1994
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 33 (10) , 2838-2842
- https://doi.org/10.1021/bi00176a013
Abstract
Mouse ribonucleotide reductase consists of two nonidentical subunits, proteins R1 and R2, each inactive alone. It has earlier been shown that the carboxyl-terminal part of the R2 protein is essential for subunit association to form the active enzyme complex. We now demonstrate that protein R2 gives rise to a number of sharp H-1 NMR resonances, significantly narrower than the major part of the resonances. This line narrowing of certain resonances indicates segmental mobility in the molecule. In two-dimensional H-1 TOCSY spectra of protein R2, cross-peak patterns from about 25 amino acid residues are visible. Most of these were assigned to the carboxyl-terminal part of the protein by comparisons with cross-peak patterns of oligopeptides corresponding to the carboxyl terminus of mouse R2 and to the patterns of a seven amino acid residue carboxyl-terminal truncated form of protein R2. These results and the magnitude of the chemical shifts of the assigned residues demonstrate that the carboxyl-terminal part of mouse R2 protein is highly mobile compared to the rest of the protein and essentially unstructured. When protein R1 is added to a solution of protein R2, the sharp resonances are broadened, suggesting that the mobility of the carboxyl-terminal tail of protein R2 is reduced. The possibility of making direct observations of subunit interaction in native and mutagenized R1/R2 proteins should allow discrimination between effects of amino acid replacements on the catalytic mechanism and effects on subunit interaction.This publication has 3 references indexed in Scilit:
- Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separationVirology, 1988
- Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteinsBiochemical and Biophysical Research Communications, 1983
- Ribonucleotide reductase from calf thymus. Separation of the enzyme into two nonidentical subunits, proteins M1 and M2.Journal of Biological Chemistry, 1980