Molecular biology of ?-lactam acylases

Abstract
β-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the β-sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.

This publication has 43 references indexed in Scilit: