On the susceptibility function of piecewise expanding interval maps
Preprint
- 11 March 2007
Abstract
We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: