Upper Neck Forces and Moments and Cranial Angular Accelerations in Lateral Impact
- 8 January 2008
- journal article
- Published by Springer Nature in Annals of Biomedical Engineering
- Vol. 36 (3) , 406-414
- https://doi.org/10.1007/s10439-007-9422-7
Abstract
Biomechanical studies using postmortem human subjects (PMHS) in lateral impact have focused primarily on chest and pelvis injuries, mechanisms, tolerances, and comparison with side impact dummies. A paucity of data exists on the head–neck junction, i.e., forces and moments, and cranial angular accelerations. The objective of this study was to determine lateral impact-induced three-dimensional temporal forces and moments at the head–neck junction and cranial linear and angular accelerations from sled tests using PMHS and compare with responses obtained from an anthropomorphic test device (dummy) designed for lateral impact. Following initial evaluations, PMHS were seated on a sled, restrained using belts, and lateral acceleration was applied. Specimens were instrumented with a pyramid-shaped nine-accelerometer package to record cranial accelerations. A sled accelerometer was used to record the input acceleration. Radiographs and computed tomography scans were obtained to identify pathology. A similar testing protocol was adopted for dummy tests. Results indicated that profiles of forces and moments at the head–neck junction and cranial accelerations were similar between the two models. However, peak forces and moments at the head–neck junction were lower in the dummy than PMHS. Peak cranial linear and angular accelerations were also lower in the dummy than in the PMHS. Fractures to the head–neck complex were not identified in PMHS tests. Peak cranial angular accelerations were suggestive of mild traumatic brain injury with potential for loss of consciousness. Findings from this study with a limited dataset are valuable in establishing response corridors for side impacts and evaluating side impact dummies used in crashworthiness and safety-engineering studies.Keywords
This publication has 15 references indexed in Scilit:
- Deflection, Acceleration, and Force Corridors for Small Females in Side ImpactsTraffic Injury Prevention, 2005
- Responses of side impact dummies in sled testsAccident Analysis & Prevention, 2005
- WorldSID Dummy Head-Neck Biofidelity ResponseStapp Car Crash Journal, 2004
- A proposed tolerance criterion for diffuse axonal injury in manPublished by Elsevier ,2004
- Biomechanics of the cervical spine. I: Normal kinematicsClinical Biomechanics, 2000
- Methodology to Quantify Human Cervical Spine Uncovertebral Joint AnatomyJournal of Musculoskeletal Research, 1997
- Omni-Directional Human Head-Neck ResponseSAE International Journal of Advances and Current Practices in Mobility, 1986
- Injuries to the Cervical Spine Caused by a Distributed Frontal Load to the ChestSAE International Journal of Advances and Current Practices in Mobility, 1982
- Measurement of Angular Acceleration of a Rigid Body Using Linear AccelerometersJournal of Applied Mechanics, 1975
- CEREBRAL CONCUSSION AND TRAUMATIC UNCONSCIOUSNESSBrain, 1974