Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.
Open Access
- 1 September 1983
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 158 (3) , 670-689
- https://doi.org/10.1084/jem.158.3.670
Abstract
Human blood mononuclear leukocytes stimulated with toxoplasma antigen, concanavalin A, mezerein plus lentil lectin, or staphylococcal enterotoxin A secreted a factor (macrophage-activating factor, or MAF) that enhanced the capacity of human macrophages to release H2O2 and to kill toxoplasmas. The same lymphoid supernatants contained IFN gamma but not IFN alpha or IFN beta. The MAF activity of six of seven unfractionated supernatants was completely eliminated by a monoclonal antibody that neutralizes IFN gamma, and MAF in the remaining supernatant was almost completely neutralized. Native IFN gamma partially purified by two independent protocols to specific activities of 1 X 10(6) and 10(7) U/mg protein was enriched in MAF activity at least as much as in antiviral activity. The capacity of macrophages to secrete H2O2 after incubation in partially purified native IFN gamma (mean peak stimulation, 8.8-fold) was greater than with unpurified lymphokines (3.8-fold) and sometimes equaled or exceeded the capacity of freshly harvested monocytes. The MAF activity of the partially purified native IFN gamma preparations was abolished by monoclonal anti-IFN gamma. Finally, IFN gamma of greater than 99% estimated purity was isolated (at Genentech, Inc.) from bacteria transformed with the cloned human gene for this lymphokine. Recombinant IFN gamma had potent MAF activity, stimulating the peroxide-releasing capacity of macrophages an average of 19.8-fold at peak response and enhancing their ability to kill toxoplasmas from 2.6 +/- 1.3% for untreated cells to 54 +/- 0.4% for treated cells. Attainment of 50% of the maximal elevation in peroxide-releasing capacity required a geometric mean concentration of 0.1 antiviral U/ml of recombinant IFN gamma, which is estimated to be approximately 6 picomolar for this preparation. Peroxide secretory capacity and toxoplasmacidal activity of macrophages peaked 2-4 d after exposure to IFN gamma. Peroxide-secretory capacity remained elevated during at least 6 d of continuous exposure, but the effect of IFN gamma was reversed within about 3 d of its removal. Activation was usually but not invariably accompanied by characteristic changes in cell morphology. Thus, IFN gamma activates human macrophage oxidative metabolism and antimicrobial activity, and appeared to be the only factor consistently capable of doing so in the diverse LK preparations tested.This publication has 53 references indexed in Scilit:
- Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing.The Journal of Immunology, 1983
- Recombinant interferon-gamma increases HLA-DR synthesis and expression.The Journal of Immunology, 1983
- Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity.The Journal of Experimental Medicine, 1982
- Production and properties of toxoplasma growth inhibitory factor (Toxo-GIF) and interferon (IFN) in the lymphokines and the circulation of toxoplasma immune miceZentralblatt für Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale. A, Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie, 1981
- Production and Properties of Immune Interferon from Spleen Cell Cultures ofToxoplasma-Infected MiceMicrobiology and Immunology, 1980
- MONONUCLEAR PHAGOCYTES: RESPONDERS TO AND PRODUCERS OF INTERFERON*Annals of the New York Academy of Sciences, 1980
- Suppression of Intracellular Multiplication of Mycobacterium tuberculosis by Virus‐Inhibiting Factor or InterferonJapanese Journal of Microbiology, 1975
- Inhibition of multiplication of Toxoplasma gondii by human monocytes exposed to T-lymphocyte products.The Journal of Experimental Medicine, 1975
- Exogenous Interferon protects Mice against Plasmodium berghei MalariaNature, 1970
- THE INFLUENCE OF IMMUNOLOGICALLY COMMITTED LYMPHOID CELLS ON MACROPHAGE ACTIVITY IN VIVOThe Journal of Experimental Medicine, 1969