Autoradiographic Localization of Corticosterone Receptors (Type III) to the Collecting Tubule of the Rat Kidney

Abstract
Recently, a class of receptors exhibiting high affinity for corticosterone was described in rat kidney (Feldman, D. et al., Endocrinology 92: 1429, 1973). These receptor sites exhibited negligible affinity for dexamethasone and aldosterone and were designated Type III to distinguish them from sites having high affinity for aldosterone (Type I), and sites with high affinity for dexamethasone and corticosterone (Type II). To visually localize Type III sites in the kidney and demonstrate whether or not they represent intracellular steroid receptors, we used an autoradiographic procedure for diffusible substances. Male adrenalectomized rats were injected intravenously with the following combination of steroids per 100 g body weight: 4 x 10(-9) mol [3H]corticosterone, 4 x 10(-9) mol unlabeled aldosterone, and 4 x 10(-9) mol unlabeled dexamethasone. To differentiate "nonspecific" binding, each experimental animal was paired with a control animal that received the same steroids plus 250-fold unlabeled corticosterone. At 3 min, 10 min, and 30 min, kidneys were removed, cut into quadrants, and frozen in isopentane cooled by liquid nitrogen. For autoradiography, 4 mum frozen sections were cut, pressed into contact with emulsion precoated slides at -30 C, melted and simultaneously dried under a jet of dry nitrogen gas, and exposed at 4 C for 2 to 6 weeks. At all three time intervals, silver grains representing [3H]corticosterone binding sites, were concentrated over collecting tubules, only in the outer medulla and cortex (those in the inner medulla and papilla were not labeled). In the labeled segments of the nephron, some of the cells showed an apparent high ratio of cytoplasmic to nuclear grains and in others nuclear labeling was more prominent. A small population of cells within labeled collecting tubules (possibly dark cells) were not labeled. Although no function can yet be ascribed to Type III receptors in the kidney, they may represent an important steroid-mediated renal mechanism.

This publication has 0 references indexed in Scilit: