Abstract
In the lobsters Jasus lalandii and Palinurus vulgaris, the rhythmical activity of the pyloric pattern generator of the stomatogastric nervous system is strongly modified by the firing of a single identified interneurone, whose activity we have recorded from the cell body, in vitro. The cell body of this interneurone, the anterior pyloric modulator (APM), is located in the oesophageal ganglion and sends two axons to the stomatogastric ganglion via the inferior oesophageal nerves, the commissural ganglia, the superior oesophageal nerves and the stomatogastric nerve. Firing of neurone APM modifies the activity of all the neurones of the pyloric network, including pacemaker and follower neurones. Its effects are both quantitative (increase in the frequency of the rhythm and in the frequency of spikes within cell bursts) and qualitative (modifications in relative efficacies of the synaptic relationships within the pyloric network, which in turn lead to changes in the phase relationships between the discharges of the neurones). The effects on pyloric activity induced by firing of neurone APM are established slowly (one or two seconds) and are of long duration (ten times the duration of APM’s discharge). These modifications most probably involve muscarinic cholinergic receptors. APM’s influences on the activity of pyloric neurones appear to be characteristic of a neuromodulatory process and are such that they may be of behavioural significance in the intact animal.