Abstract
The asymptotic nature of grass canopy spectral reflectance has been evaluated from field experimental data collected over the wavelength region of 0.500–1.000 μm at 0.005-μm intervals. The spectral reflectance of green vegetation against a soil background decreases in regions of absorption and increases in regions of minimal or no absorption as the vegetational density increases until a stable or unchanging spectral reflectance, called the asymptotic spectral reflectance, is reached. Results indicated spectral reflectance asymptotes occurred at significantly lower levels of total wet biomass, total dry biomass, dry green biomass, chlorophyll content, and leaf water content in regions of strong pigment absorption (low detectability threshold) than in the photographic ir region where absorption was at a minimum (high detectability threshold). These findings suggested that photographic ir sensors were more suited to remote sensing of moderate to high biomass levels or vegetational density in a grass canopy than were sensors operating in regions of the spectrum where strong absorption occurred.

This publication has 7 references indexed in Scilit: