Effect of chemodenervation on the cerebral vascular and microvascular response to hypoxia.
- 1 December 1990
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 67 (6) , 1365-1373
- https://doi.org/10.1161/01.res.67.6.1365
Abstract
This study evaluated the effect of bilateral carotid chemodenervation on the cerebrovascular response to hypoxia in conscious rats. Cerebral blood flow was measured using 4-iodo[N-methyl-14C]antipyrine, and the total and perfused microvasculature was studied by injection of fluorescein isothiocyanate dextran and alkaline phosphatase staining. To maintain constant PCO2, hypoxia was achieved in chemoreceptor-intact rats by the use of 4% CO2-8% O2-88% N2 and in chemodenervated rats by the administration of 8% O2-92% N2. Blood gas and hemodynamic parameters were similar in the two groups of rats. Chemodenervation had no significant effect on either resting blood flow or the perfused microvasculature during normoxia. A significant increase in cerebral blood flow (from 71 .+-. 3 to 138 .+-. 9 ml/min/100 g in control and from 91 .+-. 5 to 127 .+-. 7 ml/min/100 g in chemodenervated rats) and in the percent of cerebral arterioles and capillaries perfused occurred in both hypoxic control and chemodenervated rats. In chemoreceptor-intact rats, the greatest increase in blood flow and in perfused microvasculature occurred in caudal structures (medulla and pons) in comparison with rostral structures (cortex, thalamus, and hypothalamus). In chemodenervated rats, a similar increase in blood flow and perfused microvasculature occurred in all brain regions, with no regional differences. Thus, chemodenervation did not affect the overall cerebral blood flow or the microvascular response to hypoxia; however, rostral-to-caudal regional differences in the hypoxic response were lost after chemodenervation.This publication has 26 references indexed in Scilit:
- Lack of Capillary Recruitment in the Brains of Awake Rats during HypercapniaJournal of Cerebral Blood Flow & Metabolism, 1989
- Measurement of cerebral capillary perfusion with a fluorescent labelMicrovascular Research, 1988
- Role of α-adrenoceptors in the control of the cerebral blood flow response to hypoxiaEuropean Journal of Pharmacology, 1988
- Factors involved in the physiological regulation of the cerebral circulationPublished by Springer Nature ,1984
- Effect of papaverine on regional cerebral blood flow and small vessel blood contentEuropean Journal of Pharmacology, 1980
- Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological studyBrain Research, 1976
- Cholinergic innervations of monkey cerebral vesselsBrain Research, 1976
- Brain oxygen autoregulation: A protective reflex to hypoxia?Microvascular Research, 1974
- Are brain vessels innervated also by central (non-sympathetic) adrenergic neurones?Brain Research, 1973
- Adrenergic innervation of pial arteries related to the circle of Willis in the catBrain Research, 1967