A general non-linear method for modelling shape and locating image objects

Abstract
Objects of the same class often exhibit variation in shape. This shape variation has previously been modelled by means of point distribution models (PDMs) in which there is a linear relationship between a set of shape parameters and the positions of points on the shape. Here we present a new form of PDM, which uses a multilayer perceptron (MLP) to carry out nonlinear principal component analysis. We demonstrate that MLP-PDMs can model the shape variability in classes of object for which the linear model fails. We describe the use of MLP-PDMs in image search and present quantitative results for a practical application (face recognition), demonstrating the ability to locate image structures accurately starting from a very poor initial approximation to their pose and shape.

This publication has 10 references indexed in Scilit: