Dynamic light scattering studies of porcine submaxillary mucin fractions in dilute solution at intermediate scattering vectors

Abstract
We report dynamic light scattering measurements over a wide range of scattering vectors for fractionated samples of porcine submaxillary mucin (PSM) glycoproteins in two different solvents: 0.1M NaCl, and 6M GdnHCl. The relaxation spectrum has been successfully resolved into a slow mode corresponding to pure translational diffusion and a fast mode containing information on the relaxation times for intramolecular motion. Analysis of the slow mode permits a light scattering evaluation of the polydispersity of these high molecular weight mucin glycoprotein fractions. Determination of the longest intramolecular relaxation times τ1 shows that these are much longer for the PSM fractions in 0.1M NaCl compared to 6M GdnHCl. These data are consistent with earlier studies showing that the chain conformation is the same in both solvents, but that in 0.1M NaCl, the PSM glycoprotein undergoes a self-association process that is end-to-end in nature. Since the τ1 value is intimately related to the viscoelastic behavior of PSM solutions and gels, it is interesting to speculate that the end-to-end association process may be physiologically important.