A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2
Open Access
- 1 November 2002
- journal article
- Published by The Company of Biologists in Journal of Cell Science
- Vol. 115 (21) , 4191-4200
- https://doi.org/10.1242/jcs.00098
Abstract
The periodontal ligament (PDL) is a connective tissue located between the cementum of teeth and the alveolar bone of the mandibula. It plays an integral role in the maintenance and regeneration of periodontal tissue. The cells responsible for maintaining this tissue are thought to be fibroblasts, which can be either multipotent or composed of heterogenous cell populations. However, as no established cell lines from the PDL are available, it is difficult to assess what type of cell promotes all of these functions. As a first step to circumvent this problem, we have cloned and characterized cell lines from the PDL from mice harboring a temperature-sensitive SV 40 large T-antigen gene. RT-PCR and in situ hybridization studies demonstrated that a cell line, designated PDL-L2, mimics the gene expression of the PDL in vivo:it expresses genes such as alkaline phosphatase, type I collagen, periostin,runt-related transcription factor-2 (Runx2) and EGF receptor, but does not express genes such as bone sialoprotein and osteocalcin. Unlike osteoblastic cells and a mixed cell population from the PDL, PDL-L2 cells do not produce mineralized nodules in the minearlization medium. When PDL-L2 cells were incubated in the presence of recombinant human bone morphogenetic protein-2 alkaline phosphatase activity increased and mineralized nodules were eventually produced, although the extent of mineralization is much less than that in osteoblastic MC3T3-E1 cells. Furthermore, PDL-L2 cells appeared to have a regulatory mechanism by which the function of Runx2 is normally suppressed.Keywords
This publication has 36 references indexed in Scilit:
- Employing a Transgenic Animal Model to Obtain Cementoblasts In VitroThe Journal of Periodontology, 2000
- Osf2/Cbfa1: A Transcriptional Activator of Osteoblast DifferentiationCell, 1997
- The periodontal ligament: a unique, multifunctional connective tissuePeriodontology 2000, 1997
- Expression of bone associated markers by tooth root lining cells, in situ and in vitroBone, 1997
- Increased bone formation in osteocalcin-deficient miceNature, 1996
- Expression and role of epidermal growth factor receptors during differentiation of cementoblasts, osteoblasts, and periodontal ligament fibroblasts in the ratThe Anatomical Record, 1996
- Two Distinct Osteoblast-Specific cis-Acting Elements Control Expression of a Mouse Osteocalcin GeneMolecular and Cellular Biology, 1995
- In vitro formation of mineralized nodules by periodontal ligament cells from the ratCalcified Tissue International, 1992
- Human Periodontal Cells Initiate Mineral‐Like Nodules In VitroThe Journal of Periodontology, 1991
- Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiographyArchives of Oral Biology, 1975