Heterogeneity in the Growth of the Axial and Appendicular Skeleton in Boys: Implications for the Pathogenesis of Bone Fragility in Men
Open Access
- 1 October 2000
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 15 (10) , 1871-1878
- https://doi.org/10.1359/jbmr.2000.15.10.1871
Abstract
Men with spine fractures have reduced vertebral body (VB) volume and volumetric bone mineral density (vBMD). Men with hip fractures have reduced femoral neck (FN) volume and vBMD, site-specific deficits that may have their origins in growth. To describe the tempo of growth in regional bone size, bone mineral content (BMC), and vBMD, we measured bone length, periosteal and endocortical diameters, BMC, and vBMD using dual-energy X-ray absorptiometry in 184 boys aged between 7 and 17 years. Before puberty, growth was more rapid in the legs than in the trunk. During puberty, leg growth slowed while trunk length accelerated. Bone size was more advanced than BMC in all regions, being ∼70% and ∼35% of their predicted peaks at 7 years of age, respectively. At 16 years of age, bone size had reached its adult peak while BMC was still 10% below its predicted peak. The legs accounted for 48%, whereas the spine accounted for 10%, of the 1878 g BMC accrued between 7 and 17 years. Peripubertal growth contributed (i) 55% of the increase in leg length but 78% of the mineral accrued and (ii) 69% of the increase in spine length but 87% of the mineral accrued. Increased metacarpal and midfemoral cortical thickness was caused by respective periosteal expansion with minimal change in the endocortical diameter. Total femur and VB vBMD increased by 30–40% while size and BMC increased by 200–300%. Thus, growth builds a bigger but only slightly denser skeleton. We speculate that effect of disease or a risk factor during growth depends on the regions maturational stage at the time of exposure. The earlier growth of a regions size than mass, and the differing growth patterns from region to region, predispose to site-specific deficits in bone size, vBMD, or both. Regions further from their peak may be more severely affected by illness than those nearer completion of growth. Bone fragility in old age is likely to have its foundations partly established during growth.Keywords
This publication has 23 references indexed in Scilit:
- Fracture Site‐Specific Deficits in Bone Size and Volumetric Density in Men with Spine or Hip FracturesJournal of Bone and Mineral Research, 2001
- On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and densityBone, 2000
- The differing tempo of growth in bone size, mass, and density in girls is region-specificJournal of Clinical Investigation, 1999
- The Effects of Gonadectomy on Bone Size, Mass, and Volumetric Density in Growing Rats Are Gender-, Site-, and Growth Hormone–SpecificJournal of Bone and Mineral Research, 1999
- Exercise Before Puberty May Confer Residual Benefits in Bone Density in Adulthood: Studies in Active Prepubertal and Retired Female GymnastsJournal of Bone and Mineral Research, 1998
- From Density to Structure: Growing Up and Growing Old on the Surfaces of BoneJournal of Bone and Mineral Research, 1997
- Vertebral Deformities and Functional Impairment in Men and WomenJournal of Bone and Mineral Research, 1997
- Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: An in vitro studyJournal of Bone and Mineral Research, 1996
- The prevalence of vertebral deformity in European men and women: The european vertebral osteoporosis studyJournal of Bone and Mineral Research, 1996
- Hip fractures in the elderly: A world-wide projectionOsteoporosis International, 1992