Abstract
An efficient method of solving the Percus-Yevick and related equations is described. The method is applied to a Lennard-Jones fluid, and the solutions obtained are discussed. It is shown that the Percus-Yevick equation predicts a phase change with critical density close to 0.27 and with a critical temperature which is dependent upon the range at which the Lennard-Jones potential is truncated. At the phase change the compressibility becomes infinite although the virial equation of state does not show this behavior. Outside the critical region the PY equation is at least two-valued for all densities in the range (0, 0.6).