Fluid-phase connectivity and translational diffusion in a eutectic, two-component, two-phase phosphatidylcholine bilayer
- 1 June 1991
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 30 (22) , 5573-5579
- https://doi.org/10.1021/bi00236a033
Abstract
In recent work [Vaz, W.L.C., Melo, E.C.C., & Thompson, T.E. (1989) Biophys. J. 56, 869-876] we have shown that translational diffusion studies using fluorescence recovery after photobleaching (FRAP) provide information concerning domain structures and fluid-phase connectivity in lipid bilayers in which solid and fluid phases coexist. In the present paper, translational diffusion of the fluid-phase-soluble, solid-phase-insoluble fluorescent lipid derivative N-(7-nitrobenzoxa-2,3-diazol-4-yl) dilauroyl-phosphatidylethanolamine and the fluid-phase connectivity are examined in lipid bilayers prepared from binary mixtures of 1-docosanoyl-2-dodecanoylphosphatidylcholine (C22:0C12:0PC) and 1,2-diheptadecanoylphosphatidylcholine (di-C17:0PC) by using FRAP. The phosphatidylcholine mixture used provides a eutectic system with a eutectic point at a composition of about 0.4 mole fraction of di-C17:0PC and a temperature of about 37 degrees C [Sisk, R.B., Wang, Z.Q., Lin, H.N., & Huang, C.H. (1990) Biophys. J. 58, 777-783]. Two regions in temperature and composition, respectively below and above 0.4 mole fraction of di-C17:0PC, where fluid and solid phases coexist in the same lipid bilayer, are available for examination of fluid-phase connectivity. In mixtures containing less than 0.4 mole fraction of di-C17:0PC the fluid phase coexists with a mixed interdigitated Lc gel phase composed mostly of C22:0C12:0PC, whereas in mixtures containing greater than 0.4 mole fraction of di-C17:0PC the fluid phase coexists with a P beta' gel phase mostly composed of di-C17:0PC. When the solid phase is a P beta' gel phase, the temperature of fluid-phase connectivity for the mixtures lies close to the fluidus, which means that a small (approximately 20%) mass fraction of solid phase can divide the large bulk of the bilayer that is fluid into nonconnected domains.(ABSTRACT TRUNCATED AT 250 WORDS)Keywords
This publication has 0 references indexed in Scilit: