Correlated electron states and transport in triangular arrays

  • 21 October 2005
Abstract
We study correlated electron states in frustrated geometry of a triangular lattice. The interplay of long range interactions and finite residual entropy of a classical system gives rise to unusual effects in equilibrium ordering as well as in transport. A novel correlated fluid phase is identified in a wide range of densities and temperatures above freezing into commensurate solid phases. The charge dynamics in the fluid phase is described in terms of a height field, its fluctuations, and topological defects. We demonstrate that the height field fluctuations give rise to a ``free'' charge flow and finite dc conductivity. We show that freezing into the solid phase, controlled by the long range interactions, manifests itself in singularities of transport properties.

This publication has 0 references indexed in Scilit: