Abstract
The main result of this paper concerns the eigenvalues of an operator in the Hilbert space l2that is represented by a matrix having zeros everywhere except in a neighborhood of the main diagonal. Write (c)+ for the positive part of a real number c, i.e., put (c+ = cif c≧ 0 and (c)+=0 otherwise. Then this result can be formulated as follows. Theorem 1.1. Let k ≧ 1 be an integer, and consider the operator S on l2 such that

This publication has 3 references indexed in Scilit: