The Sznajd Consensus Model with Continuous Opinions
Preprint
- 14 July 2004
Abstract
In the consensus model of Sznajd, opinions are integers and a randomly chosen pair of neighbouring agents with the same opinion forces all their neighbours to share that opinion. We propose a simple extension of the model to continuous opinions, based on the criterion of bounded confidence which is at the basis of other popular consensus models. Here the opinion s is a real number between 0 and 1, and a parameter \epsilon is introduced such that two agents are compatible if their opinions differ from each other by less than \epsilon. If two neighbouring agents are compatible, they take the mean s_m of their opinions and try to impose this value to their neighbours. We find that if all neighbours take the average opinion s_m the system reaches complete consensus for any value of the confidence bound \epsilon. We propose as well a weaker prescription for the dynamics and discuss the corresponding results.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: