A transient technique for seismograph calibration

Abstract
A transient technique for seismograph calibration was developed and tested by a variety of methods. In the application of this technique a known transient in the form of an electrical signal is injected, through (a) a Willmore-type calibration bridge or (b) an independent coil, into the seismometer and the corresponding output transient of the system is recorded. The ratio of the Fourier transform of this transient to that of the input pulse yields phase and relative amplitude response of the seismograph as a function of period. Absolute amplitude response may be calculated if two easily determined constants of the seismometer are known. This technique makes practical the daily calibration of continuously-recording seismographs without disturbing the instruments more than a very few minutes. The transient technique was tested and proven satisfactory with results of more conventional steady-state methods, using both digital and analog analyses of the output transients. A variety of output transients corresponding to various theoretical response curves has been calculated for two standard input transients. By comparison of the calculated output transients with experimental results it is possible to obtain the response of the instrument with considerable precision quickly and without computation.

This publication has 5 references indexed in Scilit: