Abstract
We present a formal methodology for the integration of optical flow and deformable models. The optical flow constraint equation provides a non-holonomic constraint on the motion of the deformable model. In this augmented system, forces computed from edges and optical flow are used simultaneously. When this dynamic system is solved, a model-based least-squares solution for the optical flow is obtained and improved estimation results are achieved. The use of a 3-D model reduces or eliminates problems associated with optical flow computation. This approach instantiates a general methodology for treating visual cues as constraints on deformable models. We apply this framework to human face shape and motion estimation. Our 3-D deformable face model uses a small number of parameters to describe a rich variety of face shapes and facial expressions. We present experiments in extracting the shape and motion of a face from image sequences.

This publication has 11 references indexed in Scilit: