Abstract
This paper presents a frequency simplification technique for simplifying a transfer function of higher dimension to a transfer function of lower dimension. It tries to match the frequency response of the two transfer functions in the best possible manner in the frequency range of interest. It compares this method with the existing methods by means of a numerical example. The advantages of this method is that it aims at minimizing the error in the phase of two transfer functions together with magnitude and simplifies the complexity of work in solving for the unknown coefficient of the assumed simplified transfer function.

This publication has 7 references indexed in Scilit: