Molecular Metal Clusters as Catalysts
- 1 January 1981
- journal article
- research article
- Published by Taylor & Francis in Catalysis Reviews
- Vol. 23 (1-2) , 69-87
- https://doi.org/10.1080/03602458108068069
Abstract
In earlier analyses [1–8] we have established a correlation between metal clusters and metal surfaces with chemisorbed molecules in the specific contexts of (1) the metal frameworks wherein the metal cluster core structures are fragments of cubic and hexagonal close packed or body centered cubic metal bulk structures; (2) ligand stereochemistry where the geometric features of ligands bound to clusters and to metal surfaces are similar; (3) thermodynamic features where the average bond energies for ligand-metal and metal-metal bonds are comparable, for a specific metal, in the metal cluster and the metal surface regime; and (4) mobility of ligands bonded to metal cluster frameworks and to metal surfaces. Nevertheless, there are sharp distinctions between surfaces and clusters. The average coordination numbers for metal-metal interactions and for metal-ligand interactions are distinctly different for clusters and for surfaces: generally, the former are larger for surfaces and the latter are larger for clusters. Additionally, the surface state is typically differentiated from the cluster state in the degree of coordination saturation—the metal atoms in the surface state are typically less coordinately saturated even for the states in which molecules or molecular fragments are chemisorbed at the surface than those metal atoms at the periphery of a molecular metal cluster. In the crucial chemical issue, metal surfaces are far more reactive than metal clusters. Metal surfaces exhibit a wide range and high level of catalytic activity whereas most metal clusters are catalytically inert, at least under modest reaction conditions, Most reported clusters are relatively stable and nonreactive; they are not the products of sophisticated synthesis procedures designed to generate highly reactive metal clusters. They commonly have been the products of reaction mixtures run at forcing conditions and are thermodynamically controlled, not kinetically controlled, products.Keywords
This publication has 38 references indexed in Scilit:
- A Fischer-Tropsch study of supported ruthenium catalystsPublished by Elsevier ,2004
- Metal clusters with exposed and low-coordinate nitride nitrogen atomsJournal of the American Chemical Society, 1980
- Mechanistic features of catalytic carbon monoxide hydrogenation reactionsChemical Reviews, 1979
- Homogeneous carbon monoxide hydrogenation to methanol catalyzed by soluble ruthenium complexesJournal of the American Chemical Society, 1979
- Studies of CO desorption and reaction with H2 on alumina-supported RuJournal of Catalysis, 1979
- Mechanistic features of metal cluster rearrangementsChemical Reviews, 1978
- Catalysis of carbon monoxide hydrogenation by soluble mononuclear complexesJournal of the American Chemical Society, 1978
- Activation of hydrocarbons by unsaturated metal cluster complexes. 6. Synthesis and characterization of methyldecacarbonylhydridotriosmium, methylenedecacarbonyldihydridotriosmium, and methylidynenonacarbonyltrihydridotriosmium. Interconversion of cluster-bound methyl and methylene ligandsJournal of the American Chemical Society, 1977
- Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2Chemie Ingenieur Technik - CIT, 1970
- The Preparation, Properties and Structure of the Iron Carbonyl Carbide Fe5(CO)15CJournal of the American Chemical Society, 1962