Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: Role of P36

Abstract
Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD → NADH direction (malate → oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms.

This publication has 51 references indexed in Scilit: