Abstract
The dynamics of the flip-flop motion of single buckled dimers of Si(100) was elucidated by locating the tip of a scanning tunneling microscope over a single flip-flopping dimer and measuring the tunneling current (time trace). Based on a statistical analysis of the time trace, we succeeded in estimating the activation energy and the energy splitting between the two stable configurations of buckling. Strong dependence of the dynamics of the flip-flop motion on the local environment was found: Activation energy differs significantly (directly measured 32 meV, estimated 110meV) for dimers in different domains.